Ovarian cancer (OvCa) is the leading cause of deaths from gynecologic malignancies, and disseminates predominantly along ascitic currents in the peritoneum. The role of fluidic streams as modulators of OvCa metastatic progression and biomarker expression remains poorly explored. Models that capture critical biological and physical determinants of OvCa growth and treatment response are needed to enhance the translational potential of new therapeutic strategies. It is increasingly evident that no single treatment will be curative for metastatic OvCa. Rationally-designed combinations that impact multiple targets will most likely improve outcomes. Specifically, photodynamic therapy (PDT), a light-based cytotoxic modality, synergizes with chemo- and biological therapies. However, rapidly identifying treatments that cooperatively improve efficacy from the vast library of candidate interventions is not feasible with current systems. The goal of this proposal is to integrate microfluidics with heterocellular 3D OvCa models to create the first system to evaluate the effects of fluid hydrodynamics on OvCa progression. As a clear and distinct path to independence, Dr. Rizvi will use this platform to design therapeutic strategies uniquely based on flow-induced changes in molecular target expression. During the mentored K99 phase, OvCa cells will be cultured under precisely controlled laminar flow in microfluidic channels with tissueconstructs that mimic common metastatic sites (omentum and peritoneum). Corresponding heterocellular 3D OvCa models will be developed in the absence of flow to gain insights into quantitative optical imaging of biomarker expression, 3D tumor modeling, and design of targeted therapies. Dr. Rizvi's transition to independence in the R00 phase will focus first on quantifying flow-rate dependent changes in OvCa growth and molecular target profiles. Lastly, targeted therapies informed by flow- induced changes in molecular expression will be evaluated in combination with PDT. The K99/R00 mechanism will enable development of the first treatment screening platform to model the influence of fluid hydrodyamics on OvCa metastases. The resulting platform will be applicable to a broad array of tumors with differential dissemination routes. A mentoring committee has been assembled to guide Dr. Rizvi's research and facilitate his transition to independence. Primary mentorship will be provided by Dr. Utkan Demirci, who will train Dr. Rizvi in principles of fluid dynamics and engineering of microfluidic devices. Dr. Tayyaba Hasan, an expert in quantitative biomedical optics, rationally-designed targeted therapies and 3D tumor models will serve as co- mentor. There is a notable addition to the mentoring committee in Dr. Patricia Donahoe, Dean of the DoD Ovarian Cancer Academy, a member of the National Academy of Sciences and the Institute of Medicine, and a tenured Professor of Surgery at Harvard. Additional distinguished mentors are Dr. David Kaplan, an expert in biomaterials and tissue engineering, Dr. Sandra Orsulic, an expert in the molecular characteristics of OvCa and Dr. Esther Oliva, a clinical pathologist focused on gynecologic malignancies. The opportunities provided by this award will allow Dr. Rizvi to pursue this potentially ground-breaking research, and will provide valuable mentorship to enable his successful transition to an independent and productive scientific career.